EARN inflation briefing

No sign that today’s inflation explained by macro overheating: Actual (real) GDP, potential GDP, and potential GDP adjusted for labor input

potential, CBO potential, adjusted actual
2017q1 95.05338 95.05338 93.20036
2017q2 95.44483 95.44483 93.72207
2017q3 95.84964 95.84964 94.39607
2017q4 96.26489 96.26489 95.28377
2018q1 96.6945 96.6945 96.01065
2018q2 97.14174 97.14174 96.81129
2018q3 97.60403 97.60403 97.27787
2018q4 98.07278 98.07278 97.49494
2019q1 98.54796 98.54796 98.07776
2019q2 99.03018 99.03018 98.85544
2019q3 99.51412 99.51412 99.53309
2019q4 100 100 100
2020q1 100.4859 99.93349 98.69642
2020q2 100.9555 87.86179 89.87567
2020q3 101.394 94.14647 96.65907
2020q4 101.8525 96.42712 97.73708
2021q1 102.325 97.63822 99.23626
2021q2 102.8199 99.24633 100.8645
2021q3 103.3339 101.069 101.3691
ChartData Download data

The data below can be saved or copied directly into Excel.

Source: Potential output from Congressional Budget Office (CBO), GDP from National Income and Product Accounts (NIPA) from the Bureau of Economic Analysis (BEA), and potential GDP adjustment undertaken using the index of aggregate weekly hours from the Bureau of Labor Statistics (BLS)).

Most important aspect of potential output has largely recovered: Index of aggregate weekly hours

Index of Aggregate weekly hours
2017q1 95.7
2017q2 96.2
2017q3 96.7
2017q4 97.3
2018q1 97.7
2018q2 98.3
2018q3 98.6
2018q4 99.0
2019q1 99.3
2019q2 99.4
2019q3 99.7
2019q4 100.0
2020q1 99.9
2020q2 87.4
2020q3 93.2
2020q4 95.1
2021q1 95.8
2021q2 96.9
2021q3 98.2
2021q4 99.3
ChartData Download data

The data below can be saved or copied directly into Excel.

Source: Current Employment Statistics (CES) from the BLS. 

Shock in Composition of Demand: 6-quarter change in % of GDP Accounted for by Durables, Non-oil non-durables, and Residential Investment (other)

2021 Q2 Max, post-1979 Max, post-1959
Durable goods 2.1% 1.0% 1.3%
Non-oil, non-durable goods 1.3% 0.5% 1.5%
RI, improvements 0.4% 0.3% 0.5%
Sum 3.8% 1.2% 1.2%
ChartData Download data

The data below can be saved or copied directly into Excel.

Source: BEA NIPA data.

Supply-chain disruption historically high: Global supply chain pressure index

sd from average
1997-09-01 -0.49
1997-10-01 -0.18
1997-11-01 -0.46
1997-12-01 -0.83
1998-01-01 -0.94
1998-02-01 -0.55
1998-03-01 -0.31
1998-04-01 -0.25
1998-05-01 -0.53
1998-06-01 -0.75
1998-07-01 -0.82
1998-08-01 -0.88
1998-09-01 -0.93
1998-10-01 -0.72
1998-11-01 -0.97
1998-12-01 -0.96
1999-01-01 -0.49
1999-02-01 -0.24
1999-03-01 -0.39
1999-04-01 -0.48
1999-05-01 -0.64
1999-06-01 -0.61
1999-07-01 -0.91
1999-08-01 -0.67
1999-09-01 -0.58
1999-10-01 -0.33
1999-11-01 -0.26
1999-12-01 -0.13
2000-01-01 -0.59
2000-02-01 -0.43
2000-03-01 -0.33
2000-04-01 0.02
2000-05-01 0.17
2000-06-01 -0.06
2000-07-01 -0.04
2000-08-01 -0.05
2000-09-01 0.00
2000-10-01 -0.58
2000-11-01 -0.75
2000-12-01 -0.88
2001-01-01 -0.96
2001-02-01 -0.74
2001-03-01 -0.72
2001-04-01 -1.08
2001-05-01 -1.17
2001-06-01 -0.76
2001-07-01 -0.86
2001-08-01 -0.71
2001-09-01 -0.66
2001-10-01 -1.02
2001-11-01 -1.04
2001-12-01 -0.95
2002-01-01 -0.83
2002-02-01 -0.40
2002-03-01 -0.48
2002-04-01 -0.57
2002-05-01 -0.42
2002-06-01 -0.64
2002-07-01 -1.00
2002-08-01 -0.91
2002-09-01 -0.90
2002-10-01 -1.06
2002-11-01 -0.82
2002-12-01 -0.56
2003-01-01 -0.50
2003-02-01 -0.31
2003-03-01 -0.08
2003-04-01 -0.44
2003-05-01 -0.15
2003-06-01 -0.17
2003-07-01 -0.14
2003-08-01 -0.22
2003-09-01 -0.15
2003-10-01 -0.48
2003-11-01 -0.49
2003-12-01 -0.33
2004-01-01 -0.50
2004-02-01 -0.23
2004-03-01 0.31
2004-04-01 0.66
2004-05-01 0.70
2004-06-01 0.54
2004-07-01 -0.43
2004-08-01 0.30
2004-09-01 0.10
2004-10-01 -0.57
2004-11-01 -0.08
2004-12-01 0.01
2005-01-01 -0.18
2005-02-01 -0.28
2005-03-01 -0.31
2005-04-01 -1.49
2005-05-01 -1.15
2005-06-01 -0.91
2005-07-01 -0.89
2005-08-01 -0.77
2005-09-01 0.04
2005-10-01 0.16
2005-11-01 -0.46
2005-12-01 -0.54
2006-01-01 -0.36
2006-02-01 -0.59
2006-03-01 -0.31
2006-04-01 0.16
2006-05-01 0.04
2006-06-01 0.34
2006-07-01 -0.04
2006-08-01 0.25
2006-09-01 -0.56
2006-10-01 -0.38
2006-11-01 -0.22
2006-12-01 -0.43
2007-01-01 -0.77
2007-02-01 -0.72
2007-03-01 -0.54
2007-04-01 -0.76
2007-05-01 -0.23
2007-06-01 -0.28
2007-07-01 -0.35
2007-08-01 -0.10
2007-09-01 -0.21
2007-10-01 -0.75
2007-11-01 -0.65
2007-12-01 -0.13
2008-01-01 -0.47
2008-02-01 0.43
2008-03-01 0.19
2008-04-01 0.17
2008-05-01 0.01
2008-06-01 0.26
2008-07-01 0.89
2008-08-01 0.28
2008-09-01 -0.41
2008-10-01 -0.61
2008-11-01 -1.57
2008-12-01 -0.96
2009-01-01 -0.47
2009-02-01 -0.30
2009-03-01 0.17
2009-04-01 0.45
2009-05-01 -0.03
2009-06-01 -0.68
2009-07-01 -0.81
2009-08-01 -1.20
2009-09-01 -0.59
2009-10-01 -0.61
2009-11-01 -0.85
2009-12-01 -0.55
2010-01-01 -0.22
2010-02-01 0.02
2010-03-01 0.48
2010-04-01 0.51
2010-05-01 0.79
2010-06-01 0.26
2010-07-01 0.20
2010-08-01 0.44
2010-09-01 0.44
2010-10-01 0.60
2010-11-01 0.54
2010-12-01 0.89
2011-01-01 0.87
2011-02-01 0.40
2011-03-01 0.89
2011-04-01 1.73
2011-05-01 0.99
2011-06-01 0.13
2011-07-01 0.15
2011-08-01 -0.09
2011-09-01 -0.44
2011-10-01 -0.26
2011-11-01 0.24
2011-12-01 0.11
2012-01-01 0.52
2012-02-01 0.06
2012-03-01 -0.28
2012-04-01 -0.25
2012-05-01 -0.60
2012-06-01 -0.63
2012-07-01 -0.69
2012-08-01 -0.11
2012-09-01 -0.21
2012-10-01 0.07
2012-11-01 -0.30
2012-12-01 -0.03
2013-01-01 0.08
2013-02-01 -0.16
2013-03-01 -0.44
2013-04-01 -0.60
2013-05-01 -0.82
2013-06-01 -0.56
2013-07-01 -0.62
2013-08-01 -0.54
2013-09-01 -0.26
2013-10-01 -0.11
2013-11-01 -0.65
2013-12-01 -0.46
2014-01-01 -0.55
2014-02-01 -0.27
2014-03-01 -0.61
2014-04-01 -0.90
2014-05-01 -0.89
2014-06-01 -0.68
2014-07-01 -0.79
2014-08-01 -0.55
2014-09-01 -0.65
2014-10-01 -0.45
2014-11-01 -0.67
2014-12-01 -0.22
2015-01-01 -0.44
2015-02-01 -0.14
2015-03-01 -0.25
2015-04-01 -0.36
2015-05-01 -0.36
2015-06-01 -0.64
2015-07-01 -0.26
2015-08-01 -0.51
2015-09-01 -0.33
2015-10-01 -0.32
2015-11-01 -0.50
2015-12-01 -0.45
2016-01-01 -0.66
2016-02-01 -0.68
2016-03-01 -0.66
2016-04-01 -0.28
2016-05-01 -0.53
2016-06-01 -0.23
2016-07-01 -0.08
2016-08-01 0.10
2016-09-01 -0.20
2016-10-01 0.18
2016-11-01 -0.09
2016-12-01 0.04
2017-01-01 0.27
2017-02-01 0.14
2017-03-01 0.22
2017-04-01 0.14
2017-05-01 -0.01
2017-06-01 0.22
2017-07-01 0.26
2017-08-01 0.52
2017-09-01 0.71
2017-10-01 1.03
2017-11-01 0.89
2017-12-01 0.84
2018-01-01 0.73
2018-02-01 0.28
2018-03-01 0.62
2018-04-01 0.76
2018-05-01 0.68
2018-06-01 0.72
2018-07-01 0.76
2018-08-01 0.67
2018-09-01 0.61
2018-10-01 0.69
2018-11-01 0.58
2018-12-01 0.57
2019-01-01 0.66
2019-02-01 0.29
2019-03-01 0.33
2019-04-01 0.11
2019-05-01 -0.53
2019-06-01 -0.53
2019-07-01 -0.41
2019-08-01 -0.18
2019-09-01 0.26
2019-10-01 0.15
2019-11-01 0.18
2019-12-01 0.15
2020-01-01 0.05
2020-02-01 1.48
2020-03-01 3.18
2020-04-01 3.86
2020-05-01 2.88
2020-06-01 2.30
2020-07-01 2.78
2020-08-01 1.36
2020-09-01 0.61
2020-10-01 0.19
2020-11-01 0.99
2020-12-01 1.95
2021-01-01 1.97
2021-02-01 2.42
2021-03-01 2.74
2021-04-01 3.25
2021-05-01 3.57
2021-06-01 3.40
2021-07-01 3.48
2021-08-01 3.53
2021-09-01 3.85
2021-10-01 4.37
2021-11-01 4.34
2021-12-01 4.25
ChartData Download data

The data below can be saved or copied directly into Excel.

  

Source: Data compiled by the Federal Reserve Bank of New York – index aggregates measure of shipping costs, delivery times, and other measures of supply functioning.

Year-over-year inflation measures potentially misleading right now: Annualized change in all-items CPI over various time horizons

Level Last month change
Year-over-year 7.1% 0.2%
2-year change 4.2% 0.2%
Monthly change 5.8% -4.0%
ChartData Download data

The data below can be saved or copied directly into Excel.

Source: Data from Consumer Price Index (CPI) program from the BLS. 

When labor markets amplify or dampen inflationary shocks: Annualized change in prices and unit labor costs, nonfinancial corporate sector

Prices ULC
1973-1979 7.0% 7.4%
2020Q4-2021Q3 7.0% 1.5%
ChartData Download data

The data below can be saved or copied directly into Excel.

Source: Data from Table 1.15 from the BEA NIPA. 

Pre- and Post-tax profit margins hit record highs in past year

Profit-margin, pre Profit-margin, post
1979Q1 14.7% 9.0%
1979Q2 14.3% 8.5%
1979Q3 13.1% 7.8%
1979Q4 12.6% 7.3%
1980Q1 12.0% 6.2%
1980Q2 9.9% 5.7%
1980Q3 10.6% 5.8%
1980Q4 11.7% 6.8%
1981Q1 11.9% 7.3%
1981Q2 11.6% 7.6%
1981Q3 12.5% 8.3%
1981Q4 11.4% 7.8%
1982Q1 10.3% 7.3%
1982Q2 10.8% 7.8%
1982Q3 10.5% 7.5%
1982Q4 9.6% 7.1%
1983Q1 10.4% 7.6%
1983Q2 11.6% 8.3%
1983Q3 12.4% 8.6%
1983Q4 12.9% 9.0%
1984Q1 14.2% 9.9%
1984Q2 13.9% 9.7%
1984Q3 13.4% 9.9%
1984Q4 13.6% 10.1%
1985Q1 13.3% 9.8%
1985Q2 12.8% 9.6%
1985Q3 13.6% 10.0%
1985Q4 12.1% 8.7%
1986Q1 11.1% 7.7%
1986Q2 10.5% 7.2%
1986Q3 9.8% 6.6%
1986Q4 9.8% 6.0%
1987Q1 10.1% 6.3%
1987Q2 10.8% 6.7%
1987Q3 11.6% 7.4%
1987Q4 11.1% 7.2%
1988Q1 11.4% 7.5%
1988Q2 11.1% 7.3%
1988Q3 11.2% 7.2%
1988Q4 11.7% 7.7%
1989Q1 10.7% 6.4%
1989Q2 10.2% 6.5%
1989Q3 10.0% 6.6%
1989Q4 9.2% 5.7%
1990Q1 9.3% 6.0%
1990Q2 9.7% 6.2%
1990Q3 8.8% 5.2%
1990Q4 8.6% 5.2%
1991Q1 9.1% 5.9%
1991Q2 9.2% 6.2%
1991Q3 9.0% 6.2%
1991Q4 8.8% 6.0%
1992Q1 9.0% 6.1%
1992Q2 9.3% 6.1%
1992Q3 9.1% 6.1%
1992Q4 9.8% 6.7%
1993Q1 9.7% 6.5%
1993Q2 10.5% 7.1%
1993Q3 10.6% 7.5%
1993Q4 11.9% 8.0%
1994Q1 12.1% 8.6%
1994Q2 12.6% 8.9%
1994Q3 13.0% 8.9%
1994Q4 13.6% 9.3%
1995Q1 12.9% 9.0%
1995Q2 13.1% 9.3%
1995Q3 13.9% 9.9%
1995Q4 14.1% 10.1%
1996Q1 14.5% 10.5%
1996Q2 14.5% 10.4%
1996Q3 14.5% 10.4%
1996Q4 14.7% 10.7%
1997Q1 14.8% 10.9%
1997Q2 14.8% 10.8%
1997Q3 15.3% 11.1%
1997Q4 14.6% 10.6%
1998Q1 13.2% 9.3%
1998Q2 13.1% 9.4%
1998Q3 13.4% 9.6%
1998Q4 12.5% 9.1%
1999Q1 12.8% 9.1%
1999Q2 12.4% 8.9%
1999Q3 11.6% 8.1%
1999Q4 11.0% 7.5%
2000Q1 10.4% 6.8%
2000Q2 10.2% 6.7%
2000Q3 9.5% 6.4%
2000Q4 8.5% 5.5%
2001Q1 7.9% 5.6%
2001Q2 8.1% 5.8%
2001Q3 7.8% 5.8%
2001Q4 6.6% 4.8%
2002Q1 8.5% 6.8%
2002Q2 9.1% 7.4%
2002Q3 9.5% 7.6%
2002Q4 10.6% 8.6%
2003Q1 10.8% 8.3%
2003Q2 11.2% 8.9%
2003Q3 11.8% 9.3%
2003Q4 12.2% 9.5%
2004Q1 13.5% 10.3%
2004Q2 14.1% 10.9%
2004Q3 14.5% 11.0%
2004Q4 14.2% 10.7%
2005Q1 15.0% 10.3%
2005Q2 15.8% 11.4%
2005Q3 14.9% 10.4%
2005Q4 16.8% 11.9%
2006Q1 17.0% 12.2%
2006Q2 16.9% 11.8%
2006Q3 18.1% 13.0%
2006Q4 16.7% 12.0%
2007Q1 15.5% 10.8%
2007Q2 15.7% 11.0%
2007Q3 13.9% 9.7%
2007Q4 13.7% 9.8%
2008Q1 12.5% 8.8%
2008Q2 12.4% 8.7%
2008Q3 14.2% 10.7%
2008Q4 11.9% 9.8%
2009Q1 11.2% 9.0%
2009Q2 10.4% 7.8%
2009Q3 11.2% 8.5%
2009Q4 13.1% 10.0%
2010Q1 14.5% 11.4%
2010Q2 14.7% 11.6%
2010Q3 16.5% 13.1%
2010Q4 15.6% 12.2%
2011Q1 14.1% 10.8%
2011Q2 16.0% 12.8%
2011Q3 16.3% 13.4%
2011Q4 16.8% 13.4%
2012Q1 16.7% 13.3%
2012Q2 17.1% 13.5%
2012Q3 16.3% 12.7%
2012Q4 16.6% 13.0%
2013Q1 17.4% 13.7%
2013Q2 17.3% 13.7%
2013Q3 16.8% 13.1%
2013Q4 16.6% 12.9%
2014Q1 15.1% 11.3%
2014Q2 16.8% 12.8%
2014Q3 17.9% 14.0%
2014Q4 17.9% 14.0%
2015Q1 16.6% 12.7%
2015Q2 16.1% 12.4%
2015Q3 16.7% 13.0%
2015Q4 14.6% 11.4%
2016Q1 16.0% 12.7%
2016Q2 14.7% 11.3%
2016Q3 14.7% 11.4%
2016Q4 14.0% 11.0%
2017Q1 14.5% 11.9%
2017Q2 14.6% 12.0%
2017Q3 14.1% 11.4%
2017Q4 14.2% 11.6%
2018Q1 14.5% 12.4%
2018Q2 14.8% 12.5%
2018Q3 15.3% 13.0%
2018Q4 15.8% 13.4%
2019Q1 14.1% 11.9%
2019Q2 14.6% 12.3%
2019Q3 14.6% 12.6%
2019Q4 14.9% 12.6%
2020Q1 13.2% 11.5%
2020Q2 13.1% 11.1%
2020Q3 17.7% 15.2%
2020Q4 15.8% 13.4%
2021q1 16.9% 14.3%
2021q2 19.0% 16.1%
2021q3 18.7% 15.8%
ChartData Download data

The data below can be saved or copied directly into Excel.

Source: Data from Table 1.15 from the BEA NIPA.

COVID shock came on heels of austerity in local health departments: Nominal per capita expenditures in local health departments

Source: National Association of City and County Health Officials (NACCHO) public health department workforce profile.

U.S. employers not used to rapid recoveries: Non-farm payroll employment relative to previous peak

1990 2001 2007 2020
0 100 100 100 100
1 100.0 100.0 99.9 98.9
2 99.8 99.8 99.9 85.3
3 99.7 99.7 99.7 87.2
4 99.6 99.6 99.6 90.4
5 99.4 99.5 99.5 91.5
6 99.4 99.4 99.3 92.5
7 99.3 99.2 99.1 93.0
8 99.0 99.0 98.8 93.5
9 98.8 98.8 98.5 93.6
10 98.6 98.6 97.9 93.4
11 98.5 98.5 97.4 93.6
12 98.6 98.5 96.9 93.9
13 98.6 98.4 96.3 94.4
14 98.6 98.4 95.7 94.6
15 98.6 98.4 95.2 95.0
16 98.6 98.4 95.0 95.7
17 98.6 98.3 94.7 96.4
18 98.6 98.3 94.4 96.7
19 98.6 98.3 94.3 96.9
20 98.6 98.4 94.1 97.4
21 98.6 98.4 94.0 97.5
22 98.8 98.3 94.0 97.7
23 98.9 98.3 93.8
24 99.0 98.2 93.8
25 99.0 98.1 93.7
26 99.2 98.0 93.8
27 99.2 98.0 94.0
28 99.3 98.0 94.4
29 99.5 98.0 94.3
30 99.7 98.0 94.2
31 99.9 98.1 94.2
32 100.2 98.2 94.2
33 98.3 94.4
34 98.3 94.5
35 98.5 94.5
36 98.5 94.5
37 98.8 94.7
38 99.0 94.9
39 99.2 95.1
40 99.2 95.2
41 99.3 95.3
42 99.4 95.4
43 99.5 95.5
44 99.7 95.6
45 99.8 95.8
46 99.9 95.9
47 100.0 96.0
48 100.2 96.3
49 96.5
50 96.6
51 96.7
52 96.8
53 96.8
54 96.9
55 97.1
56 97.2
57 97.3
58 97.4
59 97.6
60 97.7
61 97.9
62 98.0
63 98.2
64 98.3
65 98.5
66 98.5
67 98.7
68 98.9
69 99.0
70 99.2
71 99.3
72 99.4
73 99.5
74 99.7
75 99.9
76 100.1
ChartData Download data

The data below can be saved or copied directly into Excel.

Source: BLS CES data on non-farm payrolls.

Measuring the job shortfall since February 2020: Actual and counterfactual employment, January 2019–November 2024

date Actual nonfarm payroll employment Employment if it had continued growing at the pre-recession level Employment if it had grown with population growth since February 2020
Sep-2019 151.4 NA NA
Oct-2019 151.5 NA NA
Nov-2019 151.7 NA NA
Dec-2019 151.8 NA NA
Jan-2020 152.0 NA NA
Feb-2020 152.3 152.3 152.3
Mar-2020 150.9 152.5 152.4
Apr-2020 130.4 152.7 152.5
May-2020 133.0 152.9 152.6
Jun-2020 137.7 153.1 152.7
Jul-2020 139.2 153.2 152.8
Aug-2020 140.8 153.4 152.9
Sep-2020 141.8 153.6 153.0
Oct-2020 142.5 153.8 153.1
Nov-2020 142.8 154.0 153.2
Dec-2020 142.5 154.2 153.3
Jan-2021 142.9 154.4 153.4
Feb-2021 143.4 154.6 153.5
Mar-2021 144.3 154.7 153.6
Apr-2021 144.6 154.9 153.7
May-2021 145.0 155.1 153.8
Jun-2021 145.8 155.3 153.9
Jul-2021 146.8 155.5 154.0
Aug-2021 147.2 155.7 154.1
Sep-2021 147.7 155.9 154.2
Oct-2021 148.6 156.0 154.3
Nov-2021 149.2 156.2 154.4
Dec-2021 149.8 156.4 154.5
Jan-2022 150.0 156.6 154.6
Feb-2022 150.9 156.8 154.7
Mar-2022 151.4 157.0 154.8
Apr-2022 151.6 157.2 154.9
May-2022 151.9 157.4 155.0
Jun-2022 152.3 157.5 155.1
Jul-2022 153.0 157.7 155.2
Aug-2022 153.3 157.9 155.3
Sep-2022 153.5 158.1 155.4
Oct-2022 153.9 158.3 155.5
Nov-2022 154.2 158.5 155.6
Dec-2022 154.3 158.7 155.7
Jan-2023 154.8 158.8 155.8
Feb-2023 155.1 159.0 155.9
Mar-2023 155.2 159.2 156.0
Apr-2023 155.5 159.4 156.1
May-2023 155.8 159.6 156.2
Jun-2023 156.0 159.8 156.3
Jul-2023 156.2 160.0 156.4
Aug-2023 156.4 160.2 156.5
Sep-2023 156.7 160.3 156.6
Oct-2023 156.8 160.5 156.7
Nov-2023 157.0 160.7 156.8
Dec-2023 157.3 160.9 156.9
Jan-2024 157.5 161.1 157.0
Feb-2024 157.8  161.3 157.1 
Mar-2024 158.1 161.5 157.2
Apr-2024 158.2 161.7 157.3
May-2024 158.4  161.8  157.4 
Jun-2024 158.5 162.0 157.6
Jul-2024 158.7 162.2 157.7
Aug-2024 158.8 162.4 157.8
Sep-2024 159.0 162.6 157.9 
Oct-2024 159.1 162.8  158.0 
Nov-2024 159.3 163.0 158.1
ChartData Download data

The data below can be saved or copied directly into Excel.

Notes: Payroll employment growth averaged 202,000 in the 12 months leading up to the pandemic recession. Population-adjusted employment growth applies population growth in the latest month since February 2020 to payroll employment and interpolates in the intervening years.

Source: EPI analysis of Bureau of Labor Statistics Current Population Survey public data series.

Employment change by industry since February 2020: All employees (thousands), seasonally adjusted, July 2023

Industry Employment change since February 2020
Professional and business services 1595
Transportation and warehousing 935.8
Education and health services 832
Construction 363
Financial activities 294
Manufacturing 200
Wholesale trade 170.9
Information 166
Retail services 22.6
Utilities 9.6
Mining and logging -43
Other services -53
Government -170
Leisure and hospitality -352
ChartData Download data

The data below can be saved or copied directly into Excel.

Source: Bureau of Labor Statistics' (BLS) Current Employment Statistics, Establishment Survey (CES) public data series.

Private-sector employment fell further but rebounded faster than state and local government jobs: Percent change in payrolls since February 2020, for all private and state and local government employment

Total private-sector employment State and local employment
Feb-2020 0.00% 0.00%
Mar-2020 -1.30% -0.40%
Apr-2020 -16.50% -5.20%
May-2020 -13.90% -7.70%
Jun-2020 -10.20% -7.50%
Jul-2020 -9.00% -6.60%
Aug-2020 -8.20% -5.30%
Sep-2020 -7.50% -6.20%
Oct-2020 -6.70% -6.80%
Nov-2020 -6.50% -6.90%
Dec-2020 -6.70% -7.00%
Jan-2021 -6.60% -6.40%
Feb-2021 -6.10% -6.90%
Mar-2021 -5.50% -6.60%
Apr-2021 -5.40% -6.40%
May-2021 -4.90% -6.10%
Jun-2021 -4.30% -5.30%
Jul-2021 -3.70% -3.90%
Aug-2021 -3.30% -4.00%
Sep-2021 -3.00% -4.20%
Oct-2021 -2.40% -4.60%
Nov-2021 -2.20% -4.70%
Dec-2021 -2.00% -4.70%
ChartData Download data

The data below can be saved or copied directly into Excel.

Source: Bureau of Labor Statistics' (BLS) Current Employment Statistics, Establishment Survey (CES) public data series.


Over long periods of time, household and establishment surveys are fairly consistent: Percent change in employment since February 2020, using the Current Employment Survey and Current Population Survey

CPS Employment  CES Employment
Feb-2020 0.00% 0.00%
Mar-2020 -2.10% -1.10%
Apr-2020 -16.10% -14.70%
May-2020 -13.60% -12.80%
Jun-2020 -10.50% -9.60%
Jul-2020 -9.50% -8.50%
Aug-2020 -7.40% -7.50%
Sep-2020 -7.10% -7.00%
Oct-2020 -5.80% -6.50%
Nov-2020 -5.70% -6.40%
Dec-2020 -5.70% -6.60%
Jan-2021 -5.60% -6.40%
Feb-2021 -5.30% -6.10%
Mar-2021 -5.00% -5.60%
Apr-2021 -4.80% -5.40%
May-2021 -4.60% -5.00%
Jun-2021 -4.60% -4.30%
Jul-2021 -3.90% -3.60%
Aug-2021 -3.60% -3.30%
Sep-2021 -3.20% -3.10%
Oct-2021 -2.90% -2.60%
Nov-2021 -2.20% -2.50%
Dec-2021 -1.80% -2.30%
ChartData Download data

The data below can be saved or copied directly into Excel.

Source: Bureau of Labor Statistics' (BLS) Current Employment Statistics, Establishment Survey (CES) public data series, Bureau of Labor Statistics' Current Population Survey (CPS), public data series


Unemployment rate of workers age 16 and older by race and ethnicity, January 2020–November 2024

 

Date White Black Hispanic AAPI
Jan-2020 3.1% 6.3% 4.3% 3%
Feb-2020 3%  6% 4.4% 2.5%
Mar-2020 3.9% 6.8% 5.9% 4.1%
Apr-2020 14.1% 16.6% 18.8% 14.4%
May-2020 12.3% 16.8% 17.6% 14.8%
Jun-2020 10.0% 15.2% 14.5% 13.8%
Jul-2020 9.2% 14.4% 12.8% 11.9%
Aug-2020 7.4% 12.8% 10.6% 10.6%
Sep-2020 7.0% 12.1% 10.4% 8.9%
Oct-2020 6.0% 10.9% 8.9% 7.6%
Nov-2020 6.0% 10.4% 8.6% 6.8%
Dec-2020 6.1% 10.0% 9.4% 6.1%
Jan-2021 5.7% 9.2% 8.6% 6.6%
Feb-2021 5.5% 9.8% 8.4% 5.1%
Mar-2021 5.3% 9.5% 7.7% 5.9%
Apr-2021 5.3% 9.7% 7.7% 5.7%
May-2021 5.1% 9.1% 7.1% 5.5%
Jun-2021 5.3% 9.2% 7.2% 5.7%
Jul-2021 4.8% 8.2% 6.4% 5.2%
Aug-2021 4.5% 8.7% 6.2% 4.5%
Sep-2021 4.2% 7.8% 6.1% 4.2%
Oct-2021 3.9% 7.8% 5.7% 4.2%
Nov-2021 3.7% 6.5% 5.2% 3.9%
Dec-2021 3.2%  7.1%  4.9%  3.8% 
Jan-2022 3.4% 6.9% 4.9% 3.6%
Feb-2022 3.3% 6.6%  4.4%  3.1% 
Mar-2022 3.2%  6.2% 4.2%  2.8% 
Apr-2022 3.2% 5.9% 4.1% 3.1%
May-2022 3.2% 6.2%  4.3%  2.4% 
Jun-2022 3.3%  5.8%  4.3%  3%
Jul-2022 3.1%  5.8%  3.9%  2.6% 
Aug-2022 3.2%  6.4%  4.5%  2.8% 
Sep-2022 3.1%  5.9%  3.9%  2.5% 
Oct-2022 3.3%  5.9%  4.2%  2.9% 
Nov-2022 3.3% 5.7%  4%  2.6% 
Dec-2022 3% 5.7%  4.1% 2.4% 
Jan-2023 3.1%  5.4%  4.5%  2.8% 
Feb-2023 3.2%  5.7% 5.3%  3.4%
Mar-2023 3.2% 5.0% 4.6% 2.8%
Apr-2023 3.1%  4.7%  4.4%  2.8% 
May-2023 3.3 5.6  2.9 
Jun-2023 3.1  6.0  4.3  3.2 
Jul-2023 3.1  5.8  4.4  2.3 
Aug-2023 3.4  5.3  4.9  3.1 
Sept-2023 3.4%  5.7%  4.6%  2.8%
Oct-2023 3.5%  5.8%  4.8%  3.1% 
Nov-2023 3.3% 5.8% 4.6% 3.5%
Dec-2023 3.5% 5.2% 5.0% 3.1%
Jan-2024 3.4%  5.3%  5.0%  2.9% 
Feb-2024 3.4% 5.6%  5.0% 3.4%
Mar-2024 3.4% 6.4%  4.5% 2.5%
Apr-2024 3.5% 5.6% 4.8% 2.8%
May-2024 3.5% 6.1% 5.0% 3.1%
Jun-2024 3.5%  6.3% 4.9% 4.1%
Jul-2024 3.8% 6.3% 5.3% 3.7%
Aug-2024 3.8% 6.1% 5.5% 4.1%
Sept-2024 3.6% 5.7% 5.1% 4.1%
Oct-2024 3.8% 5.7% 5.1% 3.9%
Nov-2024 3.8% 6.4% 5.3% 3.8%
ChartData Download data

The data below can be saved or copied directly into Excel.

Note: AAPI refers to Asian American and Pacific Islander. Racial and ethnic categories are not mutually exclusive; white and Black data do not exclude Latinx workers of each race.

Source: EPI analysis of Bureau of Labor Statistics’ Current Population Survey public data. 

Hires are greater than quits in all sectors while lower wage sectors experience higher levels of quits and hires: Hires and quits rates by major sector, November 2021

Hires are greater than quits in all sectors while lower wage sectors experience higher levels of quits and hires: Hires and quits rates by major sector, November 2021

Notes: The private-sector hourly wage rates correspond with the size of the bubbles (the smaller the bubble, the lower the wage rate). The 45-degree line represents where hires rates are equal to quits rates.

Source: EPI analysis of Bureau of Labor Statistics Job Openings and Labor Turnover Survey and Current Employment Survey public data series.


Spike in people not working as Omicron surges in early January: People not working because they have or were caring for someone with Covid, in millions

Date Weighted population (millions)
2020-05-05 1.31
2020-05-12 1.81
2020-05-19 1.93
2020-05-26 1.64
2020-06-02 1.73
2020-06-09 1.86
2020-06-16 2.06
2020-06-23 2.35
2020-06-30 2.79
2020-07-07 3.06
2020-07-14 3.90
2020-07-21 3.81
2020-07-28 NA
2020-08-04 NA
2020-08-11 NA
2020-08-18 NA
2020-08-25 NA
2020-08-31 2.70
2020-09-01 NA
2020-09-08 NA
2020-09-14 2.20
2020-09-15 NA
2020-09-22 NA
2020-09-28 2.39
2020-09-29 NA
2020-10-06 NA
2020-10-12 2.54
2020-10-13 NA
2020-10-20 NA
2020-10-26 2.95
2020-10-27 NA
2020-11-03 NA
2020-11-09 4.21
2020-11-10 NA
2020-11-17 NA
2020-11-23 4.82
2020-11-24 NA
2020-12-01 NA
2020-12-07 5.88
2020-12-08 NA
2020-12-15 NA
2020-12-21 6.59
2020-12-22 NA
2020-12-29 NA
2021-01-05 NA
2021-01-12 NA
2021-01-18 6.65
2021-01-19 NA
2021-01-26 NA
2021-02-01 5.90
2021-02-02 NA
2021-02-09 NA
2021-02-15 4.30
2021-02-16 NA
2021-02-23 NA
2021-03-01 3.52
2021-03-02 NA
2021-03-09 NA
2021-03-15 3.12
2021-03-16 NA
2021-03-23 NA
2021-03-29 2.63
2021-03-30 NA
2021-04-06 NA
2021-04-13 NA
2021-04-20 NA
2021-04-26 2.49
2021-04-27 NA
2021-05-04 NA
2021-05-10 2.14
2021-05-11 NA
2021-05-18 NA
2021-05-24 1.89
2021-05-25 NA
2021-06-01 NA
2021-06-07 2.11
2021-06-08 NA
2021-06-15 NA
2021-06-21 1.75
2021-06-22 NA
2021-06-29 NA
2021-07-05 1.78
2021-07-06 NA
2021-07-13 NA
2021-07-20 NA
2021-07-27 NA
2021-08-02 2.02
2021-08-03 NA
2021-08-10 NA
2021-08-16 2.94
2021-08-17 NA
2021-08-24 NA
2021-08-30 3.95
2021-08-31 NA
2021-09-07 NA
2021-09-13 4.65
2021-09-14 NA
2021-09-21 NA
2021-09-27 4.20
2021-09-28 NA
2021-10-05 NA
2021-10-11 3.72
2021-10-12 NA
2021-10-19 NA
2021-10-26 NA
2021-11-02 NA
2021-11-09 NA
2021-11-16 NA
2021-11-23 NA
2021-11-30 NA
2021-12-07 NA
2021-12-13 2.96
2022-01-10 8.75
ChartData Download data

The data below can be saved or copied directly into Excel.

Note: Population sample for people 18 and over who have not worked in the last 7 days.

Source: Authors’ analysis of microdata from the Household Pulse Survey (HHPS) from the U.S. Census Bureau.

Leisure and hospitality employment growth in 2021 and vaccination rates: January to October 2021 change in employment and October 2021 COVID-19 vaccination rates

State Vaccination rate Change in employment rate
AL 43.8% 7.2%
AK 51.7% 7.7%
AZ 52.2% 14.4%
AR 46.8% 3.1%
CA 60.2% 36.0%
CO 60.6% 23.6%
CT 69.8% 13.7%
DE 58.9% 6.8%
DC 61.3% 50.5%
FL 58.7% 13.4%
GA 46.9% 5.9%
HI 59.0% 26.0%
ID 42.8% 5.5%
IL 54.8% 26.8%
IN 49.2% 4.9%
IA 54.8% 11.4%
KS 52.3% 8.4%
KY 53.4% 1.5%
LA 46.6% 4.7%
ME 69.5% 5.7%
MD 65.2% 11.0%
MA 68.8% 20.7%
MI 52.9% 29.3%
MN 59.1% 28.4%
MS 44.7% 3.6%
MO 49.0% 9.6%
MT 49.5% 6.4%
NE 55.5% 7.9%
NV 51.9% 12.9%
NH 62.3% 15.4%
NJ 65.5% 10.9%
NM 63.8% 27.5%
NY 65.3% 21.2%
NC 51.5% 8.8%
ND 45.2% 10.6%
OH 51.1% 6.7%
OK 48.9% 2.9%
OR 62.0% 26.9%
PA 59.3% 13.8%
RI 69.7% 12.4%
SC 48.8% 5.3%
SD 52.3% 6.2%
TN 46.7% 7.8%
TX 52.4% 8.5%
UT 52.3% 9.0%
VT 70.4% 21.3%
VA 61.9% 6.0%
WA 62.4% 29.0%
WV 40.8% 10.7%
WI 57.5% 12.1%
WY 42.9% 2.0%
ChartData Download data

The data below can be saved or copied directly into Excel.

Note: Line is a linear fit of the employment change on the vaccination rate, weighted by 2019 average leisure and hospitality employment.

Source: Data from the Bureau of Labor Statistics (BLS) Current Employment Survey (CES) and Center for Disease Control and Prevention (CDC). 

No association between more fiscal relief and core inflation acceleration

Inflation Fiscal relief
Australia 0.06789125 18.37375271
Austria 0.633108167 11.66189412
Belgium 0.516666 8.222936896
Canada 0.551540667 15.88277046
Chile 2.4693405 14.0961954
Costa Rica -1.340543333 1.5
Czech Republic 4.15632175 9.604767956
Denmark 0.8430608 3.455743247
Estonia 2.532124417 5.8
Finland 1.488068942 4.272892601
France 0.394343308 9.583735008
Germany 1.401139308 13.63835285
Greece -0.33823845 21.07210227
Hungary 1.799466833 10.50824443
Iceland 1.642888583 9.249744985
Ireland 3.119180592 10.31361015
Israel 1.092786217 10.1
Italy 0.424176175 10.89855564
Japan -1.562953483 16.46834717
Korea 1.667513925 4.484902484
Latvia -0.166025167 8.7
Lithuania 2.174415417 7.497
Luxembourg 0.078539083 4.209344745
Mexico 0.7071905 0.654423967
The Netherlands -0.187322167 10.30457984
New Zealand -0.279066 19.28367812
Norway -1.5773455 7.402294317
Poland 2.55 6.463386978
Portugal 0.5812056 5.630875374
Slovak Republic 3.893570667 4.438161474
Slovenia -0.246019083 7.7
Spain 0.247616875 7.578688738
Sweden 0.044634083 4.180506601
Switzerland 0.294712933 7.773072114
Turkey 1.90799525 2.7
United Kingdom 1.408333333 16.24023041
United States 2.371270417 25.44975175
ChartData Download data

The data below can be saved or copied directly into Excel.

Notes: The acceleration in inflation is measured as the difference between inflation over the 12 months ending October 2021 relative to average inflation in 2019. The countries included are: Austria, Belgium, Canada, Costa Rica, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Japan, Italy, Latvia, Lithuania, Luxembourg, Mexico, The Netherlands, New Zealand, Norway, Portugal, Slovak Republic, Slovenia, South Korea, Spain, Sweden, Switzerland, Turkey, the United Kingdom, and the United States. All countries with both inflation data from the OECD and COVID-19 fiscal response data from the IMF are included. Data on both cumulative COVID-19 cases per million and the acceleration in core inflation is transformed into an index with the average value of each equal to 1.

Source: Data on COVID-19 case rates from ourworldindata.org/covid-cases. Inflation data from the Organization for Economic Cooperation and Development (OECD).


Larger COVID-19 shock correlates with faster core price acceleration

Inflation Covid cases per million
Australia 0.073821882 0.071036861
Austria 1.015731419 0.662442023
Belgium 1.285955391 0.540604731
Canada 0.498668812 0.577095249
Chile 0.970940577 2.583752671
Costa Rica 1.199189101 -1.402654846
Czechia 1.809975697 4.348896972
Denmark 0.741821974 0.88212241
Estonia 1.620889462 2.64944556
Finland 0.315031634 1.557015771
France 1.183009625 0.412614452
Germany 0.605278952 1.466058419
Greece 0.792506242 -0.353910082
Hungary 0.998060265 1.882841689
Iceland 0.439897774 1.719008685
Ireland 0.98941134 3.263701861
Israel 1.571640617 1.143418377
Italy 0.869554881 0.443829567
Japan 0.150224781 -1.635369945
South Korea 0.078850099 1.744774995
Latvia 1.294983787 -0.173717625
Lithuania 1.678085686 2.275162798
Luxembourg 1.414593074 0.082178042
Mexico 0.321317823 0.73995682
Netherlands 1.395392907 -0.196001381
New Zealand 0.014430577 -0.29199599
Norway 0.419615701 -1.650428788
Poland 0.881359884 2.668149375
Portugal 1.179764618 0.60813465
Slovakia 1.816032755 4.073971819
Slovenia 1.782866311 -0.257417907
Spain 1.178545751 0.259089729
Sweden 1.267630207 0.046702118
Switzerland 1.106375252 0.308367894
Turkey 1.04215497 1.996398562
United Kingdom 1.473274995 1.473585766
United States 1.523115172 2.481138698
ChartData Download data

The data below can be saved or copied directly into Excel.

Notes: Core inflation acceleration measured as the percentage change in core prices (excluding food and energy) between October 2021 and October 2020 minus the average change in year-over-year prices through 2019. This attempts to normalize core inflation relative to pre-COVID19 norms for these countries. Data on both cumulative COVID-19 cases per million and the acceleration in core inflation is transformed into an index with the average value of each equal to 1.

Source: Data on COVID-19 case rates from ourworldindata.org/covid-cases. Inflation data from the Organization for Economic Cooperation and Development (OECD).


Inflation acceleration higher in country-groups with larger COVID-19 shock

Inflation
High  1.468722
Medium 1.009634
Low 0.384308
ChartData Download data

The data below can be saved or copied directly into Excel.

Notes: Countries grouped into those with the 12 highest, the 12 lowest, and the 13 intermediate cumulative COVID-19 case counts. Bars display average core price acceleration by these groupings. Core inflation acceleration measured as the percentage change in core prices (excluding food and energy) between October 2021 and October 2020 minus the average change in year-over-year prices through 2019. This attempts to normalize core inflation relative to pre-COVID19 norms for these countries. Data on both cumulative COVID-19 cases per million and the acceleration in core inflation is transformed into an index with the average value of each equal to 1.

Source: Data on COVID-19 case rates from ourworldindata.org/covid-cases. Inflation data is the Organization for Economic Cooperation and Development (OECD).